NERVE CONDUCTION STUDIES

G P Kumar

Professor,

College of Physiotherapy,

SUMANDEEP VIDYAPEETH

Nerve Conduction Studies

- Different tests
 - Technique & Parameters of importance

Interpretations of Parameters

Hardware & Software components

Nerve Conduction Studies

- Motor Nerve Conduction Studies
- Sensory Nerve Conduction Studies
- Autonomic Nervous System Testing
- Late Responses
 - F waves
 - H Reflex
 - Axonal Reflex
- Blink reflex

Normal Physiology

- Nerve impulse generation
- Conduction along nerve fiber
 - In a myelinated fiber
 - In a non-myelinated fiber
- Conduction across Neuro Muscular Junction

Muscle fiber excitation

Nerve Impulse Generation by external stimulus

Use of Cathode

- Nerve Impulse Conduction
 - Orthodromic conduction
 - Antidromic conduction

Motor Nerve Conduction Studies

- Type of Electrodes
- Electrode Placements
- Technique
- Parameters
- Importance of two site stimulation (residual latency)
- Interpretation

Type of Electrodes & Placements

Stimulating Electrodes

Recording Electrodes

Ground Electrodes

Recording Electrodes

- Active
 - Cathode
 - Over Muscle belly

- Indifferent
 - Anode
 - Over Belly Tendon montage

Stimulating Electrodes

- Cathode
- Anode

 Cathode of stimulating electrode close to Cathode of Recording electrode

Ground Electrode

- Reduce noise
- Between Active & Indifferent

Technique

Position of Patient

Skin Resistance Lowering

- Intensity used
 - Supra Maximal stimulation

Graphical Output

CMAP

 (Compound
 Motor Action
 Potential)

- Nature of Graph
- Negative Upside, Positive down

Latency

Amplitude

Duration

Latency

 Time taken to travel from Stim. site to Rec. Site

Amplitude

No. of Motor Units

AmplitudeMeasurement

- Peak to Peak
- Negative Peak

Duration

Time taken
 by all motor
 units to
 complete
 response

Latency

Amplitude

Duration

- Latency
- Amplitude
- Duration

Conduction Velocity?

- Velocity
 - Distance / Time

 Distance – Length between Stimulation site & Recording site

Time – Latency

Any delay in Time (increase in Latency)
 will affect Velocity (decrease in velocity)

- In MNCS, the associated issue,
 - Stimulation site Nerve
 - Recording site Muscle
 - Impulse crosses Neuro Muscular Junction
 - What if problem lies at NMJ and not in Nerve?

Residual latency

- How to Overcome Residual Latency issue?
- Stimulate at Two sites
- One at Distal point (Latency – Distal Latency)
- Another at Proximal point (Latency – Proximal Latency)

- Conduction Velocity
 - Distance / Time(PL DL)
- Subtract the Distal Latency from Proximal Latency
- Proximal Latency Distal Latency =
 Time taken by impulse to travel between
 Proximal and Distal Stimulation Points

- Conduction Velocity
 - Distance / Time(PL DL)

Distance =

Measure the Distance between Proximal stimulation Point and Distal Stimulation Point

Proximal site stimulation can be any one or all

- Upper limb: Elbow, Spiral groove (Radial nerve), Axilla or Brachial plexus (Erb's point)
- Lower limb: Neck of fibula (Peroneal),
 Popliteal fossa (Tibial)

Upper Limb MNCS

GP KUMAR, Pro

Lower Limb MNCS

GP KUMAR, P

Interpretations

Latency

Amplitude

Duration

Conduction velocity

Normal Values

- Latency
- Amplitude
- Duration
- Conduction velocity
 - Upper limb -55 ± 5 m/s
 - Lower limb 50 \pm 5 m/s

Interpretations

Latency

Amplitude

Duration

Conduction velocity

Sensory Nerve Conduction Studies

- Different types of SNCS
- Technique
- Parameters
- One site stimulation
- Interpretation

Methods of SNCS

2 methods

Orthodromic

Antidromic

Mostly Antidromic is used

Electrodes

- Recording electrodes
- Ring electrodes if recording from fingers / toes
- Surface electrodes as in MNCS, in other parts

Other stimulating and ground electrodes remain same

SNCS for Upper limbs

-EP VIDYAPEETH

SNCS for Upper & Lower limbs

 Upper limb Sensory (Orthodromic)

Sural nerve

Unlike MNCS

- Requires few mv to stimulate (sensory level threshold/intensity)
- Records in Microvolts (MNCS in millivolts)
- Chances of noise are high
- Filters need to be adjusted
- Requires Industrial standard earthing

Graphical Output

- SNAP
- (Sensory
 Nerve Action
 Potential)

 Bi / Triphasic in nature

Latency

Amplitude

Duration

SNCV

Sensory Nerve Conduction Velocity

- Unlike MNCS, SNCS both stimulation and recording takes place over nerve only
- No residual latency
- So, NO NEED to stimulate two sites to calculate Velocity

Simple Distance/Time will give Velocity

Pitfalls of NCS

 With Both MNCS & SNCS only Distal part of Extremities are tested

Proximal part?

Late Responses

- F Waves
- H Reflex

G P KUMAR, Professor, COP, SUMANDEEP VIDYAPEETH

THANK YOU

GP KUMAR, Professor, COP,