NUCLEOTIDES CHEMISTRY (BI 6.2)

Nucleotides are central to maintenance and propagation of life

Think-Pair-Share

■ Biomedical importance of nucleotides

NUCLEOTIDES

Precursors of the nucleic acids

The storage and the transfer of genetic information.

Precursor of ATP

Components of important co-enzymes like NAD+ and FAD, and metabolic regulators such as cAMP and cGMP.

Composition of Nucleotides

- A nucleotide is made up of 3 components:
- a. Nitrogenous base, (a purine or a pyrimidine)
- b. Pentose sugar, either ribose or deoxyribose;
- c. Phosphate groups esterified to the sugar

Composition of Nucleotides

- When Base + Pentose sugar → nucleoside
- When the nucleoside is esterified to a phosphate group, it is called nucleotide or nucleoside monophosphate.
- When a second phosphate gets esterified to the existing phosphate group, a nucleoside diphosphate is generated.
- The attachment of the 3rd phosphate group results in the formation of a nucleoside triphosphate.
- The nucleic acids (DNA and RNA) are polymers of nucleosides monophosphates.

Nucleoside

Nucleotide

Base + Sugar

BASES

- **■** Two types of bases:
- 1. Purines are fused five- and six-membered rings
 - Adenine A DNA RNA
 - **■Guanine G DNA RNA**
- 2. Pyrimidines are six-membered rings
 - Cytosine C DNA RNA
 - ■Thymine T DNA
 - ■Uracil U RNA

Nitrogenous Bases

- Planar, aromatic, and heterocyclic
- Derived from <u>purine</u> or <u>pyrimidine</u>

Nucleic Acid Bases

Purines

Pyrimidines

Sugars

- Pentoses (5-C sugars)
- Numbering of sugars is "primed"

Nucleosides

■ Result from linking one of the sugars with a purine or pyrimidine base through an beta-N-glycosidic linkage

- Purines bond to the C1' carbon of the sugar at their N9 atoms
- Pyrimidines bond to the C1' carbon of the sugar at their N1 atoms

Nucleosides

Naming Conventions

Nucleosides:

- —Purine nucleosides end in "-sine"
 - Adenosine, Guanosine
- —Pyrimidine nucleosides end in "-dine"
 - **■Thymidine, Cytidine, Uridine**

■ Nucleotides:

- Start with the nucleoside name from above and add "mono-", "di-", or "triphosphate"
 - Adenosine Monophosphate, Cytidine Triphosphate, Deoxythymidine Diphosphate

Nucleotides

■ Result from linking one or more phosphates with a nucleoside onto the 5' end of the molecule through esterification

Abbreviations of ribonucleoside					
5'-phosphates					

Base	Mono-	Di-	Tri-
Adenine	AMP	ADP	ATP
Guanine	GMP	GDP	GTP
Cytosine	CMP	CDP	CTP
Uracil	UMP	UDP	UTP

Abbreviations of deoxyribonucleoside 5'-phosphates

Base	Mono-	Di-	Tri-
Adenine	dAMP	dADP	dATP
Guanine	dGMP	dGDP	dGTP
Cytosine	dCMP	dCDP	dCTP

dTMP

dTDP

Thymine

Nucleotides of Biological Importance

- Classification:
- 1. Adenosine nucleotides: ATP, ADP, AMP, cAMP.
- 2. Guanosine nucleotides: GTP, GDP, GMP, cGMP.
- 3. Uridine nucleotides: UTP, UDP, UMP.
- 4. Cytidine nucleotides: CTP, CDP, CMP.

- ATP, GTP, CTP, and UTP (NTPs) → energy metabolism and activation of metabolites.
- cAMP, cGMP (Cyclic nucleotides) → Second messengers
- Phosphoadenosine-5-phosphosulfate (PAPS) is known as "active sulfate" and acts as a donor of sulfate in sulfation reactions.
- S-Adenosylmethionine (SAM) is the active form of methionine, which serves as the major methyl donor in transmethylation reactions

Adenosine 3',5'-cyclic monophosphate (cyclic AMP; cAMP)

Guanosine 3',5'-cyclic monophosphate (cyclic GMP; cGMP)

Guanosine 5'-diphosphate, 3'-diphosphate (guanosine tetraphosphate) (ppGpp)

- Synthetic analogues of normally occurring nucleotides → treatment of cancer, as immunosuppression agents and antiviral drugs.
- E.g.
- > 5-Fluorouracil→ Anti-cancer
- > Azathioprine > Immunosuppressant
- > Zidovudine -> Anti-HIV

- Nucleoside sugars are activated precursors which are used in biosynthetic reactions.
- For example:
- UDP-glucose → glycogen synthesis
- UDP-galactose → ceramides
- CTP-choline → phospholipid synthesis

■ Nucleotides as essential components in Coenzymes, NAD+, FAD and Coenzyme A

Coenzyme A

(3'-P-ADP)

Nicotinamide adenine dinucleotide (NAD⁺) Flavin adenine dinucleotide (FAD)

ATP

Functions of ATP

- Muscle contraction and nerve conduction.
- Active transport across membranes
- Many anabolic reactions require ATP.
- Activation of metabolites → Phosphorylation
- Synthesis of cAMP
- Synthesis of Active methionine and active sulfate

CCES

1. Nucleosides are called

- A. Beta-D-Glycoside
- B. N-Glycosides
- C. O-Glycosides
- D. Phosphoryl glycoside

2. Pyrimidines bond to the C1' carbon of the sugar at their.....atom

A. N6

B. N3

C. N1

D. N5

3. Identify structure

- A. Cyclic nucleotide
- B. Nucleotide
- C. Nucleotide monophosphate
- D. Nucleoside

4. All are nucleosides except

- A. Adenosine
- B. Thymidine
- C. Uracil
- D. Guanosine

5. Primary PO₄ acceptor in oxidative phosphorylation is

- A. Guanosine nucleotide
- B. Cytidine nucleotide
- C. Adenosine nucleotide
- D. Uridine nucleotide

Adenosine nucleotides

- 1. Adenosine tri-phosphate (ATP):
- Storage battery of tissues
- Two of the three phosphate residues are high energy 'phosphates (~P)' and on hydrolysis each releases energy that is utilized for 'endergonic reactions'.
- ATP is an important source of energy for muscle contraction, transmission of nerve impulses, transport of nutrients across the cell membranes, motility of spermatozoa.

- Formation of 'active methionine' → methylation reactions.
- It donates phosphates for a variety of phosphotransferase reactions
- Formation of active sulphate which is necessary for incorporation of SO₄ in compounds like formation of chondroitin SO₄.
- In vivo' ATP is converted to ADP, AMP and cAMP which have important role to play in biochemical processes.

2. Adenosine diphosphate (ADP):

- Acts as a primary PO₄ acceptor in oxidative phosphorylation.
- Thus plays an important role in cellular respiration and muscle contraction.
- It activates enzyme glutamate dehydrogenase required for de-amination reaction in liver to produce ammonia.

3. Adenosine monophosphate (AMP):

- It acts as an activator of several enzymes in tissues.
- In glycolytic pathway, the enzyme phosphofructokinase is inhibited by ATP but the inhibition is reversed by AMP.
- In resting muscle, AMP is formed from ADP, by the enzyme adenylate kinase reaction.
- The AMP produced activates the phosphorylase enzyme of muscle and increases the breakdown of glycogen.

4. Cyclic AMP:

■ Chemically, it is 3', 5'-adenosine monophosphate.

- It is synthesized in the tissues from ATP.
- It is a mediator of hormone action by acting as a second messenger.
- It modulates both transcription and translation in protein biosynthesis.
- It also regulates permeability of cell membranes to water, sodium, potassium and calcium.

Guanosine nucleotide

Guanosine triphosphate (GTP):

- It is a Guanosine analogue of ATP which is involved in important metabolic reactions like
- 1. The oxidation of succinyl CoA in the citric acid cycle.
- 2. Required for protein synthesis.
- 3. Necessary for production of cAMP.
- 4. Role in Rhodopsin cycle.
- 5. Role in gluconeogenesis.
- 6. Required in purine synthesis.

Uridine nucleotides

- UDP- glucose--- glucose donor in glycogen synthesis.
- UDP-galactose, UDP-glucoronate, UDP-N-acetylgalactosamine act as sugar donors for biosynthesis of glycoproteins & proteoglycans

Cytidine nucleotides

- These are CTP, CDP and CMP.
- ■CDP- choline, CDP- glycerol, CDPethanolamine are involved in the biosynthesis of phospholipids.
- CMP- sialic acid is present in salivary glands and involved in synthesis of salivary mucin.

Coenzymes

Many coenzymes are nucleotide derivatives e.g. NAD, NADP, FAD, coenzyme- A.

DNA

- Composed of ATGC.
- Combined
 through 3' to 5'
 phosphodiester
 bonds to
 polymerize into
 a long chain.

Polarity of the DNA

C-A-G 3'

5'

DNA RNA 5' End 5' End 5' CH2 5' ČH2 H H ÓН Phosphodiester linkage 5' ĊH2, 5' ČH2, 5′ ÓН -O-P=O -O-P-O 5' CH2 5'CH2 ÓН 3' End 3' End

Watson - Crick Model

- 1. Right handed double helix
- 2. Always the two strands are complementary to each other.
- 3. Antiparallel
- 4. Base pairing rule Chargaff's rule
- 5. Hydrogen bonding
- 6. Each strand acts as a template

Major and Minor Groove

DNA binding proteins locate and interact with specific base sequences exposed in the grooves.

Structural forms of the double helix:

- Three major structural forms of DNA:
- the B form, described by Watson and Crick in 1953.
- the A form
- the **Z** form.

B form

- **Right-handed helix** with
- Ten residues per 360° turn of the helix,
- Chromosomal DNA is thought to consist primarily of B-DNA.

A form.

- Right-handed helix
- **Eleven base pairs per turn**
- The conformation found in DNA–RNA hybrids or RNA–RNA double-stranded regions is probably very close to the A form.

Z-DNA

- **Left-handed helix**
- **■** Twelve base pairs per turn .
- Occur naturally in regions of DNA that have a sequence of alternating purines and pyrimidines, for example, poly GC.

Denaturation and Renaturation of DNA

Higher organization of DNA

- In higher organisms, DNA is organized inside the nucleus.
- Double stranded DNA is first wound over histones: this is called nucleosomes.
- Chromatin is a long stretch of DNA in association with histones.
- Chromatin is then further and further condensed to form chromosomes.

Histones and the formation of nucleosomes

- There are five classes of histones, designated H1, H2A, H2B, H3, and H4.
- Basic Proteins → high content of lysine and arginine.
- Because of their positive charge, they form ionic bonds with negatively charged DNA.
- Histones, along with positively charged ions such as Mg⁺², help neutralize the negatively charged DNA phosphate groups.

Figure 1. Nucleosomal structure.

Organization of Eukaryotic Chromosomes	
DNA double helix	
DNA wrapped around histone	
Nucleosomes coiled into a chromatin fiber	
Further condensation of chromatin	
Duplicated chromosome	

CCES

1. Polarity of DNA is considered from

$$A.3' \rightarrow 5'$$

B.
$$3' \rightarrow 3'$$

C. 5'
$$\rightarrow$$
 3'

$$D.5' \rightarrow 5'$$

2. Chargaff's rule states

- A. Purines=Purines
- B. Pyrimidines=Purines
- C. Pyrimidines=Pyrimidines
- D.A+T=C+G

3. Identify structure

- A. Histones
- B. Chromatid
- C. Histone core
- D. Nucleosome

4. DNA-RNA hybrids are

- A. A-form DNA
- B. Z-form DNA
- C. B-form DNA
- D. Circular DNA

5. In sample of DNA has 10% G, what is the % of T?

A. 30% T

B. 40% T

C. 50 % T

D. 10% T

RNA

RNA

- 50% in Ribosomes and endoplasmic reticulum
- 25% in cytoplasm
- 15% in mitochondria
- 10% in nucleus.
- Cellular RNAs are of 5 types:
- 1. Messenger RNA (mRNA)
- 2. Heterogenous nuclear RNA (hnRNA)
- 3. Transfer RNA (tRNA)
- 4. Ribosomal RNA (rRNA)
- 5. Small nuclear RNA (snRNA)

RNA vs DNA Structure

Primary structure (nucleotide sequence)

Secondary structure (intramolecular base pairing)

Tertiary structure
(three-dimensional network of stacked duplexes and intramolecular interactions)

(a)

DNA

Double helix

(b)

RNA

5'-AAAAGAAUUCAAAA-3'

Short RNA helices

Most RNA molecules consist of a single strand that folds back on itself to form double-helical regions

Messenger RNA

- It acts as a messenger of the information from the gene in DNA to the protein synthesizing machinery in cytoplasm.
- The template strand of DNA is transcribed into a single stranded mRNA.
- The mRNA is a **complementary copy** of the template strand of DNA.
- Uracil will be incorporated in RNA

Coding strand

Template strand 3' C-A-G-T-T-A-G-G-C-5'

mRNA transcript 5' G-U-C-A-A-U-C-C-G-3'

- The mRNA formed and released from the DNA template is known as the primary transcript.
- It is also known as heteronuclear mRNA or hnRNA.

Transfer RNA (tRNA)

- They transfer amino acids from cytoplasm to the ribosomal protein synthesizing machinery
- Since they are easily soluble, they are also referred to as soluble RNA or sRNA.

Acceptor Arm at 3' end

Anticodon Arm

DHU Arm

Pseudouridine Arm

Codon-anticodon Base Pairing

Wobble base pairing reduces the number of tRNA genes

It also helps protect against mutations

If these bases are in first, or wobble, position of anticodon

10	С	Α	G	J	1	
	G	U	CU	AG	CAU	then the tRNA may recognize codons in mRNA having these bases in third position

If these bases are in third, or wobble, position of codon of an mRNA

C	A	G	J	
GI	U –	CU	A G I	then the codon may be recognized by a tRNA having these bases in first position of anticodon

rRNA (Ribosomal RNA)

- rRNAs are found in association with several proteins as components of the ribosomes—the complex structures that serve as the sites for protein synthesis.
- Three distinct size 23S, 16S, and 5S in prokaryotic cells.
- 28S, 18S, 5.8S, and 5S In the eukaryotic cytosol.
- "S" = Svedberg unit which is related to the molecular weight and shape of the compound.
- Some rRNA function as catalysts in protein synthesis, termed as "Ribozyme".

RNA-protein supramolecular complexes

Although proteins outnumber rRNAs, rRNAs comprise 60% of the ribosomal mass.

Small nuclear RNAs (snRNA)

- Their size ranges from 90-300 nucleotides.
- They are named as U1-7.
- The U stands for the uracil rich nature
- They take part in the formation of spliceosomes.
- They complex with specific proteins, to form small nuclear ribonucleoprotein particles (snRNPs).it is pronounced as "snurps".

	DNA	RNA
Sugar is deoxyribose	√	
Sugar is ribose		1
Adenine base is present	1	1
Cytosine base is present	1	1

	DNA	RNA
Guanine base is present	1	1
Thymine base is present	1	
Uracil base is present		1
Shape is double helix	1	

	DNA	RNA
Shape is single stranded		V
Located in nucleus		1
Located in cytoplasm		1
Stores genetic information	1	

	DNA	RNA
Functions in protein synthesis	1	√
Composed of nucleotides	1	√
Template for synthesis of proteins	V	
Transcribes the Template		
More than one type		$\sqrt{}$

CCES

1. DNA helps in synthesis of

A. mRNA

B. tRNA

C. rRNA

D. All of the above

2. Wobble position is

- A. 3rd position of the codon and 1st position of the anticodon
- B. 3rd position of the anticodon and 1st position of the codon
- C. 1st position of the codon and 3rd position of the anticodon
- D. None of the above

3. Identify arm (arrowed) of tRNA

- A. Acceptor
- B. DHU
- C. Psi (\Psi)
- D. Short

4. Primary transcript is called

- A. mRNA
- B. hnRNA
- C. tRNA
- D. Matured mRNA

5. Base paring is observed in

A. dsDNA

B. dsRNA

C. mRNA

D. Both A & B