ACUTE LEUKENIKAS

Acute Leukemia

- Definition:
- Heterogeneous group of malignant disorders which is characterized by uncontrolled clonal proliferation and accumulation of blasts cells in the bone marrow and body tissues
- Sudden onset
- If left untreated is fatal within a few weeks or months

Comparison of acute and chronic leukemias

Age

Clinical onset

Course (untreated)

Leukemic cells

Anemia

Thrombocytopenia

WBC count

Lymphadenopathy

Splenomegaly

Acute

All ages

Sudden

6 mo or less

Immature

>20% blasts

Prominent

Prominent

Variable

Mild

Mild

Chronic

Usually adults

Insidious

2-6 years

More mature cells

Mild

Mild

Increased

Present; often

Present; often

CAUSES OF ACUTE LEUKEMIA

- PRE LEUKEMIA Myelodysplastic or myeloproliferative syndromes can evolve into AML.
- CHEMICAL EXPOSURE- Alkylating agents, benzene, aromatic organic solvents.
- RADIATION Atomic bombings of Hiroshima and Nagasaki,X rays ,
 - victims of Chernobyl nuclear reactor.
- GENETICS –Down syndrome, Ataxia telengectasia, Klinefelter's syndrome, Fanconi's anaemia.
- Naturally occuring retroviruses and the human T cell lymphotropic viruses cause adult- ALL

PATHOPHYSIOLOGY

LEUKEMOGENESIS

Heterogeneous, multi-step process that results in a block of differentiation, increased proliferation and inhibition of apoptosis through genetic dysregulation.

Two-hit model of leukemogenesis

Loss of function of transcription factors needed for differentiation

Gain of functional mutations of tyrosine kinases

Differentiation block

+

Enhanced proliferation

Acute Leukemia

Pathophysiology

- Acute leukemia cause morbidity and mortality through:
 - Deficiency in blood cell number and functional neutropenia causes infections, hemorrhage due to thrombocytopenia, anaemia.
 - Invasion of vital organs- brain, lung, eyes due to increased viscosity of blood and formation of microthrombi.
 - Systemic disturbances by metabolic imbalance
 - hypokalemia, hyperuricemia.

SIGNS AND SYMPTOMS

- Generalised symptoms fever fatigue, weight loss, loss of appetite.
- Enlargement of spleen, liver
- Lymph node swelling is more common in ALL
- Easy bruising, petechiae.
- Medistinal mass may be seen in ALL.

DIAGNOSIS

- BLOOD OR MARROW EXAMINED VIA LIGHT MICROSCOPY AS WELL AS FLOW CYTOMETRY
- CYTOCHEMICAL STAINS
- CYTOGENETICS AND MOLECULER
 TECHNIQUES TO DETECT
 CHROMOSOMAL TRANSLOCATIONS
- IMMUNOPHENOTYPING

Lab evaluation

1) PERIPHERAL SMEAR-

- a) anaemia normocytic , normochromic
- b) leucopenia increased blasts (more than 20% blasts is diagnostic of acute leukemia)
- c) thrombocytopenia
- 2) BONE MARROW
 - a) hypercelluler marrow
 - b) blasts 20%- 90%

AML - the myeloblast is a large blast with a moderate amount of cytoplasm, fine lacey chromatin, and prominent nucleoli. 10-40% of myeloblasts contain Auer rods.

Myeloblasts with Auer rods

 ALL – in contrast to the myeloblast, the lymphoblast is a small blast with scant cytoplasm, dense chromatin, indistinct nucleoli, and no auer rods

Lymphoblast

Difference between myeloblast and lymphoblast

Fine, Lacy

Prominent

Present in 50%

AML
(Myeloblast)
Blast size:
Large

Cytoplasm: Moderate

Chromatin:

Nucleoli:

Auer-rods:

ALL (Lymphoblast)

Small

Scant

Dense

Indistinct

Never present

FAB classification of Acute myeloid leukemia (AIVIL)

мо	AML, minimally differentiated
M1	AML, without maturation
M2	AML, with maturation
М3	Acute promyelocytic leukemia, hypergranular
МЗу	Acute promyelocytic leukemia, variant, microgranular
M4	Acute myelomonocytic leukemia
M4eo	Acute myelomonocytic leukemia with eosinophilia
M5a	Acute monoblastic leukemia, poorly differentiated
M5b	Acute monoblastic leukemia, differentiated
M6	Acute erythroleukemia
М7	Acute megakaryoblastic leukemia

WHO Classification of AIVIL

- I. AML with recurrent genetic abnormalities
 - AML with t(8;21)(q22;q22);
 - AML with abnormal bone marrow eosinophils [inv(16)(p13q22) or CBFB/MYH11]b
 - Acute promyelocytic leukemia [AML with t(15;17)(q22;q12) (PML/RAR) and variants]b
 - AML with 11q23 (MLL) abnormalities
- II. AML with multilineage dysplasia

With prior MDS

Without prior MDS

- III. AML and myelodysplastic syndromes, therapy-related
 - Alkylating agent–related
 - Topoisomerase type II inhibitor-related
- IV. AML not otherwise categorized

Favourable

Favourable

Intermediate

poor

Very poor Poor

Very poor Very poor

intermediate

MO - Minimally differentiated AVIL

- 5% 10%
- Negative or < 3% blasts stain for MPO ,PAS and NSE Blasts are negative for B and T lymphoid antigens, platelet glycoproteins and erythroid glycophorin A.
- Myeloid antigens: CD13, CD33, CD11b and HLA DR positive.

M1 - Acute Myeloblastic Leukemia without maturation

- Minimal maturation of marrow nonerythroid cells is present.
- Most of the blasts are agranular with high N/Cratio
- Auer rods are infrequent.
- Staining: Relatively few blasts (5-10%) are MPO+ve.
- A minimum of 3% MPO positive blasts are required for diagnosis.
- NSE and PAS negative.
- Immunophenotype: Variably positive for CD13, CD14, CD11b, CD33, and HLA-DR.
- Chromosome Abnormalities: t(9;22)
 Philadelphia chromosome, 8+, -5, and -7.

M2 - Wyeloblastic with maturation

M2 is the most common (20-40%).

Maturation: Auer rods are frequent

Staining: The blasts are largely MPO +VE

NSE and PAS are generally-ve

Immunophenotype: Variable positivity

for CD13, CD33, and HLA-DR, but are –ve

for CD14 and CD11b.

Chromosome Abnormalities: t(8;21), 8+,

-5, and -7.

Cell Morphology:In M2 AML promyelocytes are also present They have more numerous granules than myeloblasts and mayhave an eccentric nucleus and a Golgi zone. This is characterized by an 8,21 chromosomal translocation

M2 subtype showing two promyelocytes.

M3 Acute Promyelocytic Leukemia (APML)

- 10-15%
- Marrow cells hypergranular promyelocytes
- Auer rods may be seen
- Classical Hypergramular, 80% leukopenic
- Variant Hypogranular,
 - leukocytosis
- Granules contain procoagulants
 - (thromboplastin-like) -
 - massive DIC
 - t(15:17) is diagnostic

M3 - Hypergranular promyelocytic

- This form of AML has a bone marrow with >30% blasts
 Is more virulent than other forms
 Occurs with a medium age of 39
 The WBC count is decreased
- Treatment causes a release of the granules and may send the patient into disseminated intravascular coagulation and subsequent bleeding It is characterized by a 15,17 chromosomal translocation

Note hypergranular promyelocytes

M3m - Hypogranular promyelocytic

- The bone marrow has > 30% blasts
- The WBC count is increased.
- Like the M3 type, treatment causes a release of the
- granules and may send the
- patient into disseminated
- intravascular coagulation and
- subsequent bleeding and
- It is characterized by a 15,17

translocation

Note hypogranular promyelocytes

M4 - Acute Myelomonocytic Leukemia

- **10-15%**
- Both myeloblasts and monoblasts are present
- Monoblasts positive for NSE
- Subset asscociated with inv(16)
- Increased incidence CNS involvement
- Monocytes and promonocytes 20% 80%

M4 subtype showing a myeloblast (left) and two monoblasts (right).

Monoblasts vs. Myeloblasts

Monoblasts

More cytoplasm which is often basophilic

Cytoplasmic vacuolation seen

Fewer granules

Myeloblasts

scanty cytplasm

Cytoplasmic vacuolation not seen

More granules

Occasionally will see slight nuclear fold

Few, large nucleoli

Typically round nucleus

More nucleoli

M5a - Acute Monoblastic Leukemia

- 0 10-15%
- Poorly differentiated
- >80% monoblasts
- Monoblasts(
 peroxidase-neg,
 NSE-pos) &
 promonocytes
 predominate in
 marrow & blood

Monoblasts

1/1515

<5%

- Well differentiated <80% monoblasts
 Mature monocytes predominate in blood.
 Promyelocytes are also +nt
- Often asso with infiltration into gums, CNS, lymph nodes & extramedullary sites Weakness, bleeding and diffuse erythematous skin rash

Note monoblasts, promonocytes, and monocytes.

M6 - Acute Erythroblastic Leukemia

>50% of the nucleated marrow cells are abnormal nucleated RBCs

Morphology: The leukemic red cells are frequently bizarre with extreme dysplastic features including: giant forms, multinucleation, cytoplasmic vacuolization, cytoplasmic buds, and megaloblastoid changes.

Staining: The blasts are MPO-ve, but often +ve for NSE. The malignant red cells are PAS positive,

Immunophenotype+ve for glycophorin A.

Chromosome Abnormalities: 8+, -5, del(5q), and -7.

MII - Acute megkaryoblastic leukemia

- May be accompanied by atypical megakaryocytes.
- The marrow is often fibrotic.
- **Staining:** M7 blasts are MPO negative and variably positive for PAS and NSE.
- Immunophenotypic studies of M7 are positive for glycoproteins GP lb andGP llb/IIIa.
- Factor VIII related protein is usually found in the megakaryoblast cytoplasm.
- Chromosome Abnormalities: t(1;22), have been associated with M7 in infants.
- M7 blasts may have granular cytoplasm and shed 'platelets'.

M7 - Acute megkaryoblastic leukemia

Immunoperoxidase staining (brown) for Factor VIII related protein identifies the blasts as being of megakaryocyte lineage.

Morphologic subtypes of acute lymphoblastic leukemias (FAB classification)

Subtype	Morphology	Occurrence (%)
L1	Small round blasts, clumped chromatin	75
L2	Pleomorphic larger blasts, clefted nuclei, fine chromatin	20
L3	Large blasts, nucleoli, vacuolated cytoplasm	5

L1 - most common found in children

- Best prognosis.
- The cell size is small with fine or clumped homogenous nuclear chromatin and absent or indistinct nucleoli.
- The nuclear shape is regular, occasionally clefting or indented.
- ■The cytoplasm is scant, with slight to moderate basophilia and variable vacuoles.

L2 – most frequent ALL found in adults.

- The cell size is large and heterogenous with variable nuclear chromatin and prominent nucleoli
- The nucleus is irregular, clefting and indented.
- The cytoplasm is variable and often moderate to abundant with variable basophilia and variable vacuoles.

- **L3** This is the rarest form of ALL
- The cell size is large, with fine, homogenous nuclear chromatin containing prominent nucleoli.
- The nucleus is regular oval to round.
- The cytoplasm is moderately abundant and is deeply basophilic and vacuolated.

Acute leukemias with mixed lineage

Occasionally there are acute leukemias that are biphenotypic and display phenotypes for two different lineages

- B lymphoid/myeloid
- T lymphoid/myeloid
- B/T lymphoid
- Myeloid/Natural killer
- A rare trilineage leukemia has also been seen (was B/T lymphoid/myeloid)

CYTOGENETICS

Cytogenetics and molecular techniques used in study of acute leukemia

- SOUTHERN BLOT
- PCR & RT-PCR
- FISH
- CGH (Comparative genomic hybridisation)
- IN-SITU HYBRIDISATION

Examples of translocations

A. INVOLVING TRANSCRIPTION REGULATION

- Retinoic acid receptor translocation: AML M3
- Core binding factor translocation: AML M2,M4
- l 1q23 translocation :Mixed lineage leukemia
- E2A translocation : childhood B-ALL

B.INVOLVING TYROSINE KINASES

- BCR-ABL fusion (resistance to apoptosis)
- FLT3 mutations (loss of autoinhibition & constitutive tyrosine kinase activity)

CYTO-CHEMISTRY

CYTO-CHEMISTRY

Use of special stains to differentiate the types of blasts as:

- Myeloid
- Lymphoid
- Monocytoid

Commonly employed stains in leukemia diagnosis

Stain	Comments
Sudan black B	Myelomonocytic cells
Myeoperoxidase	Myelomonocytic cells
Chloroacetate esterase	Granulocyte blasts
Alpha naphthylbutyrate esterase	Monocytic cells
Periodic acid- Schiff	Lymphoblast, erythroblasts - block positivity Myeloblast-speckle pattern

Diagnostic markers of AML

FAB classification	Cytochemistry		
	МРО	PAS	Esterase
Mo undifferentiate	-	-	-
M1 (myeloid)	+	-	-
M2 (myeloid with differentiation)	+	-	-
M3 (APL)	++	-	-
M4 (AMMoL)	+	-	+
M5 (AMoL)	-	+ block	++
M6 (erythroid)	-	++	-
M7 (megakaryocytic)	-	±	-

Acute lymphoblastic leukemias - reactivity with special stains

Subtype	Peroxidase or Sudan black	Non- specific esterase	Periodic acid-Schiff
L1			+++
L2		-	+++
L3	-	-	+++

MYELOPEROXIDASE

SPECIFICITY:

Stains-

- Primary & secondary granules of neutrophils, eosinophils & monocytes(weak)
- Auer rods

Doesn't stain-

Lymphoid & erythroid precursors.

SUDAN BLACK-B

SPECIFICITY:

Stains-

- Primary & secondary granules of neutrophils, eosinophils, monocytes.
- Auer rods

Doesn't stain-

Lymphoid & erythroid precursors

PAS

- SPECIFICITY: Primarily reacts with glycogen
- Stains-
- neutrophils granules(PAS positivity increases with maturation)
- eosinophil cytoplasm
- monocytes
- some T & B
 lymphocytes & many leukaemic blasts

NSE (non-specific esterase)

- SPECIFICITY: an enzyme whose activity is found in monocytes.
- Two types of substrates are commonly used—
 - alpha-naphthyl-butyrate
 - alpha-naphthyl-acetate
- The former is specific for monocytes whereas the latter also reacts with NSE of megakaryocytes (NaF inhibits NSE of monocytes only).

Acid phosphatase

- Acid phosphatase may be found in myeloblasts and lymphoblasts.
- T lymphocytes have a high level of acid phosphatase and this can be used to help make a diagnosis of acute T-lymphocytic leukemia

Leukocyte Alkaline phosphatase

- Leukocyte alkaline phosphatase is located in the tertiary granules of segmented neutrophils, bands and metamyelocytes.
- The LAP score is determined by counting 100 mature neutrophils Each cell is graded from 0 to 4
- The total LAP score is calculated by adding up the scores for each cell.
- Normal SCORE 0-400/100 cells.

LAP SCORE

0	Negative, no granules
1	Occ. granules scattered in cytoplasm
2	Moderate no. of granules
3	Numerous granules
4	Heavy positivity with numerous coarse granules crowding cytoplasm, freq.overlying the nucleus

IMMUNO-PHENOTYPING (IMMUNOLOGIC MARKERS)

IMMUNOPHENOTYPING

- Identify antigens present on the blast cells
- Differentiate T-ALL and B-ALL
- Determine whether the leukemia is lymphoid or myeloid (especially important when cytochemical markers are negative or equivocal. E.g: AML-MO)
- 4. Certain antigens have prognostic significance
- 5. Rare cases of biphenotypic where both myeloid and lymphoid antigens are expressed.
- 6. Able to identify the subtype of leukemia. E.g.: AML-M7 has a specific surface marker of CD 61 etc.

References

- Wintrobes clinical hematology
- Pathologic basis of disease- Robbins and Cotran
- Practical haematology- Dacie and Lewis
- Harrisons 17th edition
- Internet search